m
A selection of what we, and others, consider to be some of our most important or defining outputs.
Taylor, G.K. & Thomas, A.L.R. (2014). Evolutionary Biomechanics: Selection, Phylogeny, and Constraint. 176pp. Oxford University Press: Oxford. ISBN 978-0-19-856638-0. https://doi.org/10.1093/acprof:oso/9780198566373.001.0001.
Young, J., Walker, S.M., Bomphrey, R.J., Taylor, G.K., & Thomas, A.L.R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552. https://doi.org/10.1126/science.1175928.
Taylor, G.K., & Krapp, H.G. (2007). Sensory systems and flight stability: what do insects measure and why? Adv. Insect Physiol., 34, 231-316. https://doi.org/10.1016/S0065-2806(07)34005-8.
Thomas, A.L.R., Taylor, G.K., Srygley, R.B., Nudds, R.L., & Bomphrey, R.J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol., 207(24), 4299-4323. https://doi.org/10.1242/jeb.01262.
Taylor, G.K., Nudds, R.L., & Thomas, A.L.R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425(6959), 707-711. https://doi.org/10.1038/nature02000.
Taylor, G.K., & Thomas, A.L.R. (2003). Dynamic flight stability in the desert locust Schistocerca gregaria. J. Exp. Biol., 206(16), 2803-2829. https://doi.org/10.1242/jeb.00501.
Srygley, R.B., Thomas, A.L.R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420(6916), 660-664. https://doi.org/10.1038/nature01223.
Summaries capturing the main findings of some of our key publications.
Kempton et al. (2023) Visual versus visual-inertial guidance in hawks pursuing terrestrial targets. Hawks and other raptors are skilled at chasing prey on the wing. This requires a fast and accurate response, but what sensory input do they use to achieve this? Here we use a high-speed motion capture system to measure the turning behaviour of Harris' hawks pursuing a manoeuvring target in the lab. By fitting computer simulations of their steering behaviour to our experimental data, we find that the hawks must have been responding to their target's motion relative to some external reference. This reference could have been provided visually using the background over which the target was moving, or inertially using gyroscopic input from the bird's semicircular canals. Our results have implications for drones designed to chase terrestrial targets.
KleinHeerenbrink, France et al. (2022) Optimization of avian perching manoeuvres. Perching at speed is amongst the most demanding flight behaviours that birds perform, and has eluded most autonomous vehicles. We used a Hollywood-style motion capture system to track four Harris’ hawks flying back and forth between perches placed at a range of different spacings on 1,585 flights. Three of the birds were inexperienced juveniles that had only flown short distances previously. These youngsters flapped directly between the perches for their first few flights, but soon learned an indirect swooping behaviour like that of the experienced bird that we tested. By using a physics-based computer simulation to model the birds' flight, we found that swooping minimised neither the time nor the energy taken to travel between perches. Instead, by selecting the right speed and position from which to swoop up to the perch, we found that the birds minimized the distance from the perch at which they stalled, thereby keeping their landings as safe and controllable as possible. When aircraft engineers use computers to solve the problem of perching using a trial-and-error approach called reinforcement learning, it can take a powerful computer tens of hundreds of hours to find an answer. Yet, our work shows that hawks find an optimised solution over a handful of flights, revealing the gap that still exists between natural and artificial intelligence. Besides aiding the design of small aircraft capable of perching like birds, understanding how animals learn complex motor tasks like learning to fly could revolutionise robotics.
Kempton et al. (2022) Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea. Albatrosses are renowned for harvesting energy from the wind gradient that occurs over the ocean's surface, using a characteristic weaving and undulating flight behaviour. This method of exploiting the wind to save effort is called dynamic soaring, and explains how an albatross can travel thousands of miles across the oceans, barely ever flapping its wings. Although dynamic soaring was described scientifically by Rayleigh in 1883, and was noticed nearly 400 years earlier by Leonardo da Vinci, it has remained a remarkably difficult phenomenon to prove – especially in birds that flap their wings as well as glide. Our study shows that small seabirds have also mastered the art of working smarter not harder when soaring at sea, proving that it isn’t just albatrosses that perform the aerial acrobatics needed for dynamic soaring on the windy open ocean. Using bird-borne video cameras and GPS loggers, we show that sleek seabirds called Manx shearwater also use dynamic soaring. The key difference is that by flapping their wings for part of the cycle, shearwaters can perform the same feat of flight in weaker winds. Not only do we prove that shearwaters employ dynamic soaring to harvest energy from the wind; we also find they actively choose conditions that provide an opportunity to work smarter not harder. The fact that Manx shearwater achieve this in UK coastal waters suggests that small maritime drones could pull the same trick to extend their flight range and duration when on patrol.
Mills et al. (2018) Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey. Peregrine falcons are famed for their high-speed, high-altitude stoops. Hunting prey at perhaps the highest speed of any animal places a stooping falcon under extraordinary physical, physiological, and cognitive demands, yet it remains unknown how this behavioural strategy promotes catch success. Because the behavioral aspects of stooping are intimately related to its biomechanical constraints, we address this question through an embodied cognition approach. We model the falcon's cognition using guidance laws inspired by theory and experiment, and embody this in a physics-based simulation of predator and prey flight. Stooping maximizes catch success against agile prey by minimizing roll inertia and maximizing the aerodynamic forces available for maneuvering, but requires a tightly tuned guidance law, and exquisitely precise vision and control.
Brighton et al. (2017) Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles. Renowned as nature’s fastest predators, peregrines are famous for their high-speed stooping and swooping attack behaviors. We used miniature GPS receivers to track peregrines attacking dummy targets thrown by a falconer or towed by a drone, and fitted a mathematical model describing the dynamics of the guidance system used in interception. We collected onboard video giving a falcon’s-eye view of the attacks, and used this to validate our conclusions for attacks on live targets. Remarkably, we find that the terminal attack trajectories of peregrines are described by the same feedback law used by visually-guided missiles, but with a tuning appropriate to their lower flight speed. Our findings have application to drones designed to remove other drones from protected airspace.
A complete listing of the peer-reviewed papers, preprints, books, and book chapters authored by members of the Oxford Flight Group.
Humbert, J.S., Krapp, H.G., Baeder, J.D. Badrya, C., Dawson, I.L., Huang, J.V., Hyslop, A., Jung, Y.S., Lutkus, C., Mortimer, B., Nagesh, I., Ruah, C., Walker, S.M., Yang, Y., Żbikowski, R.W., Taylor, G.K. (2024). Motion vision is tuned to maximize sensorimotor energy transfer in blowfly flight. bioRxiv 2024.03.29.587347. [preprint] https://doi.org/10.1101/2024.03.29.587347.
Borsier, E., Sanders, H., Taylor, G.K. (2024). Brightness cues affect gap negotiation behaviours in zebra finches flying between perches. R. Soc. Open Sci. 11, 240007. https://doi.org/10.1098/rsos.240007.
Kloepper, L.N., Taylor, G.K., Domski, P., Vanderelst, D., Eveland, K., Stevenson, R.L. (2024). HawkEar: a bird-borne visual and acoustic platform for eavesdropping the behavior of mobile animals. Methods Ecol. Evol. 00, 1-8. https://doi.org/10.1111/2041-210X.14329.
Brighton, C.H., Kempton, J.A., France, L.A., KleinHeerenbrink, M., Miñano, S., Taylor, G.K. (2023). Obstacle avoidance in aerial pursuit. Curr. Biol. 33, 3192-3202.e3. https://doi.org/10.1016/j.cub.2023.06.047.
Kempton, J.A., Brighton, C.H., France, L.A., KleinHeerenbrink, M., Miñano, S., Shelton, J., Taylor, G.K. (2023). Visual versus visual-inertial guidance in hawks pursuing terrestrial targets. J. R. Soc. Interface 20, 20230071. https://doi.org/10.1098/rsif.2023.0071.
Dutta, A., Pérez-Campanero Antolín, N., Taylor, G.K., Zisserman, A., Newport, C. (2023). A robust and flexible deep-learning workflow for animal tracking. bioRxiv 2023.04.20.537633. [preprint] https://doi.org/10.1101/2023.04.20.537633.
Harvey, C., de Croon, G., Taylor, G.K., Bomphrey, R.J. (2023). Lessons from natural flight for aviation: then, now, and tomorrow. J. Exp. Biol. 226, jeb245409. https://doi.org/10.1242/jeb.245409.
Miñano, S., Golodetz, S., Cavallari, T., Taylor, G.K. (2023). Through hawks’ eyes: synthetically reconstructing the visual field of a bird in flight. Int. J. Comput. Vis. https://doi.org/10.1007/s11263-022-01733-2.
Peréz-Campanero Antolín, N., Taylor, G.K. (2023). Gap selection and steering during obstacle avoidance in pigeons. J. Exp. Biol. 226, jeb244215. https://doi.org/10.1242/jeb.244215.
Davranoglou, L.-R., Taylor, G.K., Mortimer, B. (2023). Sexual selection and predation drive the repeated evolution of stridulation in Heteroptera and other arthropods. Biol. Rev. https://doi.org/10.1111/brv.12938.
Leroy, A., Taylor, G.K. (2022). FlyView: a bio-informed optical flow truth dataset for visual navigation using panoramic stereo vision. In: 36th Conference on Neural Information Processing Systems (NeurIPS 2022), Datasets and Benchmarks Track.
Mohamed, A., Taylor, G.K., Watkins, S., Windsor, S.P. (2022). Opportunistic soaring by birds suggests new opportunities for atmospheric energy harvesting by flying robots. J. R. Soc. Interface https://doi.org/10.1098/rsif.2022.0671.
Taylor, G.K. (2022). Embrace wobble to level flight without a horizon. Nature 610, 455-457. https://doi.org/10.1038/d41586-022-03217-2.
KleinHeerenbrink, M., France, L.A., Brighton, C.H., Taylor, G.K. (2022). Optimization of avian perching manoeuvres. Nature 607, 91-96. https://doi.org/10.1038/s41586-022-04861-4.
Brighton, C.H., Kloepper, L.N., Harding, C.D., Larkman, L., McGowan, K., Zusi, L., Taylor, G.K. (2022). Raptors avoid the confusion effect by targeting fixed points in dense aerial prey aggregations. Nat. Commun. 13, 4778. https://doi.org/10.1038/s41467-022-32354-5.
Kempton, J.A., Wynn, J., Bond, S., Evry, J., Fayet, A.L., Gillies, N., Guilford, T., Kavelaars, M., Juarez-Martinez, I., Padget, O., Rutz, C., Shoji, A., Syposz, M., Taylor, G.K. (2022). Optimization of dynamic soaring in a flap-gliding seabird affects its large-scale distribution at sea. Sci. Adv. 8, eabo0200. https://doi.org/10.1126/sciadv.abo0200.
Miller, T., Taylor, G.K., Mortimer B. (2022). Slit sense organ distribution on the legs of two species of orb-weaving spider (Araneae: Araneidae). Arthropod Struct. Dev. 67: 101140. https://doi.org/10.1016/j.asd.2022.101140.
Minano, S., Taylor, G.K. (2021). Through hawks' eyes: reconstructing a bird's visual field in flight to study gaze strategy and attention during perching and obstacle avoidance. In: Workshop on Computer Vision for Animal Behavior Tracking and Modeling, CVPR Virtual, 19-25 June 2021. bioRxiv 2021.06.16.446415. https://doi.org/10.1101/2021.08.28.458019.
Walker, S.M., Taylor, G.K. (2021). A semi-empirical model of the aerodynamics of manoeuvring insect flight. J. R. Soc. Interface 18: 20210103. https://doi.org/10.1098/rsif.2021.0103.
Brighton, C.H., Chapman, K.E., Fox, N.C., Taylor, G.K. (2021). Attack behaviour in naïve Gyrfalcons is modelled by the same guidance law as in Peregrines, but at a lower guidance gain. J. Exp. Biol. 224(5): jeb238493. https://doi.org/10.1242/jeb.238493.
Brighton, C.H., Zusi, L., McGowan, K., Kinniry, M., Kloepper, L.N., Taylor, G.K. (2021). Birds versus bats: attack strategies of bat-hunting hawks, and the dilution effect of swarming. Behav. Ecol. 32(3): 464-476. https://doi.org/10.1093/beheco/araa145.
Hein, A.M., Altshuler, D.L., Cade, D.E., Liao, J.C., Martin, B.T., Taylor, G.K. (2020). An algorithmic approach to natural behavior. Curr. Biol. 30(11): PR663-R675. https://doi.org/10.1016/j.cub.2020.04.018.
Davranoglou L.-R., Mortimer B., Taylor G.K., Malenovský, I (2020). On the morphology and evolution of cicadomorphan tymbal organs. Arthropod Struct. Dev. 55: 100918. https://doi.org/10.1016/j.asd.2020.100918
Nagesh, I., Walker, S.M., Taylor, G.K. (2019). Motor output and control input in flapping flight: a compact model of the deforming wing kinematics of manoeuvring hoverflies. J. R. Soc. Interface 16, 20190435. https://doi.org/10.1098/rsif.2019.0435.
Brighton, C.H., Taylor, G.K. (2019). Hawks steer attacks using a guidance system tuned for close pursuit of erratically maneuvering targets. Nat. Commun. 10, 2462 https://doi.org/10.1038/s41467-019-10454-z.
Taylor, L.A., Taylor, G.K., Lambert, B., Walker, J.A., Biro, D., Portugal, S.J. (2019). Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together. PLoS Biol. 17(6), e3000299 https://doi.org/10.1371/journal.pbio.3000299.
Davranoglou, L.-R., Cicirello, A., Taylor, G.K., Mortimer, B. (2019). Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size. PLoS Biol. 17(3): e3000155 https://doi.org/10.1371/journal.pbio.3000155.
Davranoglou, L.-R., Cicirello, A., Mortimer, B., Taylor, G.K. (2019). Response to “On the evolution of the tymbalian tymbal organ: Comment on “Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size” by Davranoglou et al. 2019”. Cicadina 18: 17-26 http://public.bibliothek.uni-halle.de/index.php/cicadina/article/view/1821.
Davranoglou L.-R., Mortimer B., Taylor G.K., Malenovský, I. (2019). On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae) Arthropod Struct. Dev. 52: 100880. https://doi.org/10.1016/j.asd.2019.100880.
Mills, R., Taylor, G.K., Hemelrijk, C.K. (2019). Sexual size dimorphism, prey morphology and catch success in relation to flight mechanics in the peregrine falcon: a simulation study. J. Avian Biol. 50(3), e01979 https://doi.org/10.1111/jav.01979.
Tian, F.-B., Tobing, S., Young, J., Lai, J.C.S., Walker, S.M., Taylor, G.K., Thomas, A.L.R. (2019). Aerodynamic characteristics of hoverflies during hovering flight. Comput. Fluids 183: 75-83. https://doi.org/10.1016/j.compfluid.2018.10.008
Taylor, G.K. (2018). Simple scaling law predicts peak efficiency in oscillatory propulsion. Proc. Natl. Acad. Sci. USA 115(32): 8063-8065. https://doi.org/10.1073/pnas.1809769115.
Mills, R., Hildenbrandt, H., Taylor, G.K., Hemelrijk, C.K. (2018). Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey. PLoS Comput. Biol. 14(4), e1006044. https://doi.org/10.1371/journal.pcbi.1006044.
Brighton, C.H., Thomas, A.L.R., Taylor, G.K. (2017). Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles. Proc. Natl. Acad. Sci. USA 114(51) 13495-13500. https://doi.org/10.1073/pnas.1714532114.
Bomphrey, R.J., Nakata, T., Phillips, N., Walker, S.M. (2017). Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 92-95. https://doi.org/10.1038/nature21727.
Windsor, S.P. & Taylor, G.K. (2017). Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths. Proc. R. Soc. B 284(1864), 20171622. https://doi.org/10.1098/rspb.2017.1622.
Davranoglou L.-R., Baňař P., Schlepütz C.M., Mortimer B., Taylor G.K. (2017). The pregenital abdomen of Enicocephalomorpha and morphological evidence for different modes of communication at the dawn of heteropteran evolution. Arthropod Struct. Dev. 46(6), 843-868. https://doi.org/10.1016/j.asd.2017.08.006.
Warfvinge, K., Klein Heerenbrink, M. & Hedenström, A. (2017). The power-speed relationship is U-shaped in two free-flying hawkmoths (Manduca sexta). J. R. Soc. Interface 14, 20170372. https://doi.org/10.1098/rsif.2017.0372.
Klein Heerenbrink, M., Johansson, L. C. & Hedenström, A. (2017). Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. J. R. Soc. Interface 14, 20170099. https://doi.org/10.1098/rsif.2017.0099
Taylor, G.K., Reynolds, K.V., & Thomas, A.L.R. (2016). Soaring energetics and glide performance in a moving atmosphere. Phil. Trans. R. Soc. B 371(1704), 20150398. https://doi.org/10.1098/rstb.2015.0398.
Davranoglou, L.-R. (2016). Redeicephala taylori, a new genus and species of Reduviidae from New Guinea, with notes on a few morphological features of the Tribelocephalinae (Hemiptera: Heteroptera). Acta Entomol. Musei Natl. Pragae 56(1), 39-50.
Baňař, P., Davranoglou, L.-R., Chłond, D. (2016). A new species of Henicocephaloides from eastern Madagascar (Hemiptera: Heteroptera: Reduviidae). Entomol. Americana 122(1–2):238–244. https://doi.org/10.1664/15-RA-050.
Hofhuis, H., Moulton, D., Lessinnes, T., Routier-Kierzkowska, A.-L., Bomphrey, R.J., Mosca, G., Reinhardt, H., Sarchet, P., Gan, X., Tsiantis, M., Ventikos, Y., Walker, S.M., Goriely, A., Smith, R., Hay, A. (2016). Morphomechanical innovation drives explosive seed dispersal. Cell 166(1), 222–233. https://doi.org/10.1016/j.cell.2016.05.002.
Rogers, S.M., Riley, J., Brighton, C.H., Sutton, G.P., Cullen, D.A., Burrows, M. (2016). Increased muscular volume and cuticular specialisations enhance jump velocity in solitarious compared with gregarious desert locusts, Schistocerca gregaria. J. Exp. Biol. 219, 635-648. https://doi.org/10.1242/jeb.134445.
Mokso, R., Schwyn, D.A., Walker, S.M, Doube, M., Wicklein, M., Müller, T., Stampanoni, M., Taylor, G.K., Krapp, H.G. (2015). Four-dimensional in vivo X-ray microscopy with projection-guided gating. Sci. Rep., 5, 8727. https://doi.org/10.1038/srep08727.
Davranoglou, L.-R. (2015). A description of the previously unknown female of Symploce digitifera (Blattodea: Ectobiidae: Blatellinae). Afr. Invertebr. 56(3), 555-558. https://doi.org/10.5733/afin.056.0304.
Taylor, G.K. & Thomas, A.L.R. (2014). Evolutionary Biomechanics: Selection, Phylogeny, and Constraint. 176pp. Oxford University Press: Oxford. ISBN 978-0-19-856638-0. https://doi.org/10.1093/acprof:oso/9780198566373.001.0001.
Reynolds, K.V., Thomas, A.L.R., & Taylor, G.K. (2014). Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis. J. Roy. Soc. Interface 11(101), 20140645. https://doi.org/10.1098/rsif.2014.0645.
Boyde, A., McCorkell, F.A., Taylor, G.K., Bomphrey, R.J., Doube, M. (2014). Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging. Microsc. Res. Tech. 77(12), 1044-1051. https://doi.org/10.1002/jemt.22435.
Guilford, T. & Taylor, G.K. (2014). The sun compass revisited. Anim. Behav. 97, 135-143. https://doi.org/10.1016/j.anbehav.2014.09.005.
Walker, S.M., Schwyn, D.A., Mokso, R., Wicklein, M., Müller, T., Doube, M., Stampanoni, M., Krapp, H.G., Taylor, G.K. (2014). In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol., 12(3), e1001823. https://doi.org/10.1371/journal.pbio.1001823.
Windsor, S. P., Bomphrey, R.J., & Taylor, G.K. (2014). Vision-based flight control in the hawkmoth Hyles lineata. J. Roy Soc. Interface, 11(91), 20130921. https://doi.org/10.1098/rsif.2013.0921.
Horstmann, J.T., Henningsson, P., Thomas, A.L.R., Bomphrey, R.J. (2014). Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates. PLOS ONE 9(3), e91040. https://doi.org/10.1371/journal.pone.0091040.
Mokso, R., Marone, F., Irvine, S., Nyvlt, M., Schwyn, D., Mader, K., Taylor, G.K., Krapp, H.G., Skeren, M., Stampanoni, M. (2013). Advantages of phase retrieval for fast x-ray tomographic microscopy. J. Phys. D., 46(49). https://doi.org/10.1088/0022-3727/46/49/494004.
Schwyn, D.A., Mokso, R., Walker, S.M., Doube, M., Wicklein, M., Taylor, G.K., Stampanoni, M., Krapp, H.G. (2013). High-Speed X-ray Imaging on the Fly. Synchrotron Radiat. News, 26(2), 4-10. https://doi.org/10.1080/08940886.2013.771064.
Henningsson, P., Bomphrey, R.J. (2013). Span efficiency in hawkmoths. J. R. Soc. Interface 10(84), 20130099. https://doi.org/10.1098/rsif.2013.0099.
Taylor, G.K. (2013). Thorax. In: The Insects. Structure and Function. R. F. Chapman. 5th edn. S.J. Simpson & A.E. Douglas, eds. pp 149-155. Cambridge University Press, Cambridge.
Taylor, G.K. (2013). Legs and Locomotion. In: The Insects. Structure and Function. R. F. Chapman. 5th edn. S.J. Simpson & A.E. Douglas, eds. pp 157-189. Cambridge University Press, Cambridge.
Taylor, G.K. (2013). Wings and flight. In: The Insects. Structure and Function. R. F. Chapman. 5th edn. S.J. Simpson & A.E. Douglas, eds. pp 193-230. Cambridge University Press, Cambridge.
Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2012). Operation of the alula as an indicator of gear change in hoverflies .J. Roy. Soc. Interface, 9(71), 1194-1207. https://doi.org/10.1098/rsif.2011.0617.
Taylor, G.K., Carruthers, A.C., Walker, S.M., & Hubel, T.Y. (2012). Wing Morphing in Insects, Birds and Bats: Mechanism and Function. In: Morphing Aerospace Vehicles and Structures, J. Valasek, ed. pp 11-40. https://doi.org/10.1002/9781119964032.ch2.
Krapp, H.G., Taylor, G.K. & Humbert, J.S. (2012). The mode-sensing hypothesis: matching sensors, actuators and flight dynamics. In: Frontiers in Sensing. From Biology to Engineering. F. G. Barth, M. V. Srinivasan & J. A.C. Humphrey, eds. pp 101-114. Springer, Vienna.
Bomphrey, R.J., Henningsson, P., Michaelis, D., Hollis, D. (2012). Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation. J. R. Soc. Interface 9(77), 3378-3386. https://doi.org/10.1098/rsif.2012.0418.
Bomphrey, R.J., Henningsson, P. (2012). Time-varying span efficiency through the wingbeat of desert locusts. J. R. Soc. Interface9(71), 1177-1186. https://10.1098/rsif.2011.0749.
Bomphrey, R.J. (2012). Advances in animal flight aerodynamics through flow measurement. Evol. Biol. 39(1), 1-11. https://doi.org/10.1007/s11692-011-9134-7.
Gillies, J. A., Thomas, A.L.R., & Taylor, G.K. (2011). Soaring and manoeuvring flight of a steppe eagle Aquila nipalensis. .J. Avian Biol., 42(5), 377-386. https://doi.org/10.1111/j.1600-048X.2011.05105.x.
Ajduk, A., Ilozue, T., Windsor, S.P., Yu, Y.S, Seres, K.B., Bomphrey, R.J, Tom, B.D, Swann, K., Thomas, A., Graham, C., Zernicka-Goetz, M. (2011). Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat. Commun. 2, 417. https://doi.org/10.1038/ncomms1424.
Taylor, G.K. (2010). Insect flight control. In: R. Blockley, W. Shyy, eds. Encyclopedia of Aerospace Engineering. Wiley, Chichester.
Carruthers, A.C., Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2010). Aerodynamics of aerofoil sections measured on a free-flying bird. Proc. Inst. Mech. Eng. G. J. Aero. Eng., 224(8), 855-864. https://doi.org/10.1243/09544100JAERO737.
Carruthers, A.C., Thomas, A.L.R., Walker, S.M., & Taylor, G.K. (2010). Mechanics and aerodynamics of perching manoeuvres in a large bird of prey. Aero. J., 114(1161), 673-680.
Taylor, G.K., Holbrook, R.I., & de Perera, T.B. (2010). Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish. J. Roy. Soc. Interface, 7(50), 1379-1382. https://doi.org/10.1098/rsif.2009.0522.
Windsor, S.P., Norris, S.E., Cameron, S.M., Mallinson, G.D., Montgomery, J.C. (2010). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. J. Exp. Biol. 213(22), 3819-3831. https://doi.org/10.1242/jeb.040741.
Windsor, S.P., Norris, S.E., Cameron, S.M., Mallinson, G.D., Montgomery, J.C. (2010). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J. Exp. Biol. 213(22), 3832-3842. https://doi.org/10.1242/jeb.040790.
Young, J., Walker, S.M., Bomphrey, R.J., Taylor, G.K., & Thomas, A.L.R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552. https://doi.org/10.1126/science.1175928.
Bomphrey, R.J., Taylor, G.K., & Thomas, A.L.R. (2009). Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids, 46(5), 811-821. https://doi.org/10.1007/s00348-009-0631-8.
Bomphrey, R.J., Walker, S.M., & Taylor, G.K. (2009). The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena. PLoS One, 4(11), e7852. https://doi.org/10.1371/journal.pone.0007852.
Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2009). Deformable wing kinematics in free-flying hoverflies J. Roy. Soc. Interface, 7(42), 131-142. https://doi.org/10.1098/rsif.2009.0120.
Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2009). Deformable wing kinematics in the desert locust: How and why do camber, twist and topography vary through the stroke? J. Roy. Soc. Interface, 6(38), 735-747. https://doi.org/10.1098/rsif.2008.0435.
Walker, S.M., Thomas, A.L.R., & Taylor, G.K. (2009). Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies. J. Roy. Soc. Interface, 6(33), 351-366. https://doi.org/10.1098/rsif.2008.0245.
Taylor, G.K. (2008). Flight control of insects (in Japanese). In: T. Shimozawa, ed., Insect Mimetics, Vol. 3 of Advanced Biomimetic Series, pp 678-684, NTS Inc., Tokyo.
Taylor, G.K., Bacic, M., Bomphrey, R.J., Carruthers, A.C., Gillies, J.A., Walker, S.M., Thomas, A.L.R. (2008). New experimental approaches to the biology of flight control systems. J. Exp. Biol., 211(2), 258-266. https://doi.org/10.1242/jeb.012625.
Carruthers, A.C., Thomas, A.L.R., & Taylor, G.K. (2007). Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. J. Exp. Biol., 210(23), 4136-4149. https://doi.org/10.1242/jeb.0111.
Taylor, G.K. (2007). Modelling the effects of unsteady flow phenomena on flapping flight dynamics— stability & control. In: R. Liebe, ed., Flow phenomena in Nature: a challenge to engineering design, Vol. 1, pp 155-166, WIT Press, Southampton.
Taylor, G.K., & Krapp, H.G. (2007). Sensory systems and flight stability: what do insects measure and why? Adv. Insect Physiol., 34, 231-316. https://doi.org/10.1016/S0065-2806(07)34005-8.
Bomphrey, R.J., Taylor, G.K., Thomas, A.L.R., & Lawson, N.J. (2006). Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. J. Roy. Soc. Interface, 3(7), 311-317. https://doi.org/10.1098/rsif.2005.0090
Bomphrey, R.J., Lawson, N.J., Taylor, G.K., & Thomas, A.L.R. (2006). Application of digital particle image velocimetry to insect aerodynamics: Measurement of the leading-edge vortex and near wake of a hawkmoth. Exp. Fluids, 40(4), 546-554. https://doi.org/10.1007/s00348-005-0094-5.
Bomphrey, R.J., Harding, N.J., Taylor, G.K., Thomas, A.L.R., & Lawson, N.J. (2005). The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol., 208(6), 1079-1094. https://doi.org/10.1242/jeb.0147.
Taylor, G.K. (2005). Flight muscles and flight dynamics: towards an integrative framework. Anim. Biol., 55(1), 81-99. https://doi.org/10.1163/1570756053276871.
Taylor, G.K., & Zbikowski, R.W. (2005). Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. J. Roy. Soc. Interface, 2(3), 197-221. https://doi.org/10.1098/rsif.2005.0036.
Nudds, R.L., Taylor, G.K., & Thomas, A.L.R. (2004). Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proc. Roy. Soc. B, 271(1552), 2071-2076. https://doi.org/10.1098/rspb.2004.2838.
Thomas, A.L.R., Taylor, G.K., Srygley, R.B., Nudds, R.L., & Bomphrey, R.J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol., 207(24), 4299-4323. https://doi.org/10.1242/jeb.01262.
Taylor, G.K., & Thomas, A.L.R. (2003). Dynamic flight stability in the desert locust Schistocerca gregaria. J. Exp. Biol., 206(16), 2803-2829. https://doi.org/10.1242/jeb.00501.
Taylor, G.K., Nudds, R.L., & Thomas, A.L.R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425(6959), 707-711. https://doi.org/10.1038/nature02000.
Taylor, G.K., & Thomas, A.L.R. (2003). Erratum: Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol. (2002) 214 (351-370)). J. Theor. Biol., 221(4), 671. https://doi.org/10.1006/jtbi.2003.3205
Taylor, G.K., & Thomas, A.L.R. (2002). Animal flight dynamics II. Longitudinal stability in flapping flight. J. Theor. Biol., 214(3), 351-370. https://doi.org/10.1006/jtbi.2001.2470.
Srygley, R.B., Thomas, A.L.R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420(6916), 660-664. https://doi.org/10.1038/nature01223.
Thomas, A.L.R., & Taylor, G.K. (2001). Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol., 212(3), 399-424. https://doi.org/10.1006/jtbi.2001.2387.
Taylor, G.K. (2001). Mechanics and aerodynamics of insect flight control. Biol. Rev., 76(4), 449-471. https://doi.org/10.1017/S1464793101005759.
Balmford, A., Lewis M.J., Brooke, M. de L., Thomas, A.L.R. and Johnson, C.N. (2000). Experimental analyses of sexual and natural selection on short tails in a polygynous warbler. Proc. R. Soc. Lond. B 267(1448), 1121-1128. https://doi.org/10.1098/rspb.2000.1117.
Garner, J.P., Taylor, G.K., & Thomas, A.L.R. (1999). On the origins of birds: The sequence of character acquisition in the evolution of avian flight. Proc. Roy. Soc. B, 266(1425), 1259-1266. https://doi.org/10.1098/rspb.1999.0772.
Thomas, A.L.R., Hedenström, A. (1998). The optimum flight speeds of flying animals. J. Avian Biol. 29(4), 469-477. https://doi.org/10.2307/3677166.
Garner, J.P., Thomas, A.L.R. (1998) Counting the fingers of birds and dinosaurs. Science 280(5362), 355. https://doi.org/10.1126/science.280.5362.355a.
Thomas, A.L.R., Rowe, L. (1998). Experimental tests on tail elongation and sexual selection in swallows (Hirundo rustica) do not affect the tail streamer and cannot test its function. Behav. Ecol. 8(5), 580-581. https://doi.org/10.1093/beheco/8.5.580.
Ellington, C.P., van den Berg, C., Willmott, A.P., Thomas, A.L.R. (1996). Leading-edge vortices in insect flight. Nature 384, 626–630. https://doi.org/10.1038/384626a0.